

EIS-based health micro-instrumentation for measurement of drug transdermal delivery

Pasquale Arpaia University of Napoli Federico II Italy

Research

1994-2007 2022-20224

30 years of EIS in operation

EIS for prosthesis osseointegration diagnostics in dentistry and audiology

Artificial Intelligence for model definition in EIS

2007-2024

EIS for transdermal delivery in aesthetics and in diabetology

1994

2004

2014

2024

Friends of operation

30 years of EIS friendship in operation

V. Bruno

I. Sannino

U. Cesaro

G. Montenero

N. Moccaldi

M. Taglialatela O. Cuomo

F. Clemente

A. Smarra

G. Mastrati F. Crauso

D. Acierno

C. Manna

Family of EIS operation

More than 30 years of EIS family in operation

A low frequency impedance study of steel/concrete interface

M. Arpaia, P. Pernice, A. Costantini

EIS for transdermal delivery SCIENTIFIC REPORTS

OPEN Noninvasive measurement of transdermal drug delivery by impedance spectroscopy

Received: 18 November 2016 Accepted: 06 February 2017 Pasquale Arpaia^{1,*}, Umberto Cesaro^{1,*} & Nicola Moccaldi^{2,*}

"Best Demonstration Award"

Context

6

Transdermal drug delivery advantages:

- no first-pass metabolism,
- less toxicity,
- less side effects
- greater patient compliance.

Strategies:

- Chemical Enhancers,
- Physical systems as:
 - Sonophoresis,
 - Iontophoresis,
 - Electroporation.

Different tissue conditions due to inter- and intra-individual characteristics (e.g. age, sex, ethnicity)

Lack for non invasive and in vivo assessment of the actual dose of drugs

Loss of the posology concept

State of the art

- Biopsy
- Suction blisters
- Tape stripping
- Confocal Raman Spectroscopy
- Colorimetric scale for corticosteroid

- No personalized dosages
- Possible waste of medication
- No real-time feedback to patient

Transdermal delivery in aestethics

abiliternational

innovum

Revilase+ Blister application VisageQ10 Add 1 Blister of VisageQ10 in a Revilase Bottle. Shake well-Apply 1/3 of the product (20ml) over the entire face, neck and décolleté area.

Aesthetics without posology

courtesy of: thedoctorstv.com.

Requirements

General aims

- Low cost
- Non invasive measurement method
- Immediate efficacy assessment for all non-invasive systems for intradermal convey.

Idea

 A method based on impedance spectroscopy (f < 50 kHz) for measuring a substance delivered under the skin

¹²Laboratory emulation

Screening measurement campaign

- A commercial drug used in aesthetics dermatology with a conductivity of 526 μ S/cm
- Pre-gelled Ag/AgCl Electrodes
- Solartron 1260
- to investigate relationship among1. (i) drug amount (ii) impedance2. and (iii) uncertainty sources.

Laboratory emulation

Although uncertainty (different eggplant pulpe, electrode configuration, etc.) a clear relationship between amount of injected substance and impedance

decrease in impedance magnitude by 800 Ω .

The trend of the phase is not correspondingly regular

Laboratory emulation

14

Drug Conductivity	Signal Frequency	Electrodes Area	Electrodes Gap	Signal Amplitude	
666 µS/cm	1.00 kHz	3.64 cm ²	4.6 cm	20 mV	
Sensitivity [ml ⁻¹]	Nonlinearity [%]	$1 - \sigma$ Repeatability [%]	Accuracy [%]	Resolution [ml]	
3.8	0.47	0.07	0.68	0.005	

Ex-vivo tests

	Sensitivity [ml ⁻¹]	Nonlinearity [%]	$1 - \sigma$ Repeatability [%]	Accuracy [%]	Resolution [ml]
Laboratory exp.	30.6	3.64	0.11	4.38	0.35
<i>Ex-vivo</i> exp.	34.4	5.04	0.47	6.20	0.44

Clinical tests

	Sensitivity [ml ⁻¹]	Nonlinearity [%]	$1-\sigma$ Repeatability [%]	Accuracy [%]	Resolution [ml]
Laboratory experiments	29.5	2.35	0.07	5.23	0.23
Ex-vivo experiments	24.5	4.25	0.16	7.40	0.37
<i>In-vivo</i> experiments	22.7	3.31	0.27	5.71	0.19

Satisfying linear behavior

EIS in diabetology

XXII World Congress of the International Measurement Confederation (IMEKO 2018)IOP PublishingIOP Conf. Series: Journal of Physics: Conf. Series 1065 (2018) 132008doi:10.1088/1742-6596/1065/13/132008

PAPER · OPEN ACCESS

Non-invasive real-time in-vivo monitoring of insulin absorption from subcutaneous tissues

Pasquale Arpaia¹, Ornella Cuomo², Nicola Moccaldi¹, Alessandra Smarra¹, and Maurizio Taglialatela²

¹ Department of Electrical Engineering and Information Technology,

² Department of Neuroscience and Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy.

Diabetes: a pancreas desease

courtesy of: 10insalute.com

Artificial Pancreas

Artificial Pancreas (AP) consists of closed-loop control of blood glucose in diabetes)

AP operation

The loop is closed in case of basal insulin administration (i.e. long term, e.g. daily).

At each meal, when food is ingested, further insulin is administered specifically (Bolus).

The Bolus problem

Even most recent systems cannot react to such quick glucose swing.

Needs for new control inputs: e.g.,

- 1. insulin sensitivity factor (ISF)
- 2. and insulin duration of action. (IDA)

They are both fixed during Artificial Pancreas calibration.

Bioavailability

However, ISF and IDA can be subject to significant variations depending on the kinetics of the insulin absorption (bioavailability).

Fraction of an administered dose of unchanged drug reaching the systemic circulation.

The insulin bioavailability over time is assessed indirectly from the measurement of its time dependent disappearance from the administration volume

The idea - 1

The insulin variation is assessed noninvasively by EIS.

The leakage of a given amount of insulin (ml) produces a corresponding variation in the measured equivalent impedance in the administration volume.

The idea - 2

Personalized medicine

At each administration, a linear model for the individual subject in each his/her condition is identified (personalized medicine).

Significant increase in interand intra-individual reproducibility of bioavailability measurements

The idea - 3

Inverse model of insulin **appearance** is used in the absorption (**disappearance**) phase

Estimated amount of drug still not absorbed

EIS Insulin Meter

Prototype

- A. Doughterboard BIO3Z for 4-wire bioimpedance measurement
- B. Battery
- C. ON and Reset buttons
- D. Display

In-vitro results

Ex-vivo results

Ex-vivo results

Personalization accuracy

EIS past, present and ...

Epelboin Frumkin Armstrong McDonald/Lasia

Internet of NanoThings (IoNT)

Nanosensors embedded over the world transmitting info under request

FOR YOUR ATTENTION!

TE Technology Department

Magnets, Superconductors and Cryostats (MSC) GROUP