

# A PLEA FOR SOME STANDARIZATION IN ELECTRICAL BIOIMPEDANCE





Carlos-Augusto González-Correa, MD, PhD. Emeritus Researcher at the Colombian Ministry of Science (Min-Ciencias).



Eléctrica



Creator of the Doctoral Program (in network) in Biomedical Sciences at the Colombian Coffee Ecoregion

UNIVERSIDA

QUINDIO



**Universidad Tecnológica** 

de Pereira



Universidad del

Tolima









# **PHYSICAL ASPECTS**

# Coulomb's law of electrical charges

| + + | + →                      |
|-----|--------------------------|
| ← 🗕 | $\bigcirc$ $\rightarrow$ |
| + → | ← 😑                      |

Ohm's law



**Electric current** is nothing else that the **movement of electrical charges** (whatever they are: electrons, protons or ions) through a medium. The forces that produce this movement can be either a voltage or a chemical concentration gradient (as in excitable cells).

**Electrical impedance** is the ratio between the force (V) needed to generate a specific alternate current at a specific frequency through a specific object.







# **BIOELECTRICITY**



scientific instruments









# **;;;THIS IS NOT TRUE!!!**











7/21

# **THE TRUTH IS:**



# TERMINOLOGY

| ſ      | R      | Xc           | Z     | φ (AF)  |
|--------|--------|--------------|-------|---------|
| kHz    | Ω      | Ω            | Ω     | 0       |
| 5      | 866.4  | 40.7         | 867.3 | 2.7     |
| 10     | 847.6  | 60.2         | 849.8 | 4.1     |
| 20     | 813.1  | 80.3         | 817.1 | 5.6     |
| 31     | 784.2  | 88.6         | 789.2 | 6.4     |
| 50     | 751.4  | <b>91.</b> 7 | 757.0 | 7.0     |
| 100    | 706.9  | 87.5         | 712.3 | 7.1     |
| x = 75 | 52.1 y | = -77.8      | r     | = 169.5 |

R = Z' = real part of the impedance

*X*c = *Z*" = imaginary part of the impedance

$$Z = R + jXc$$

$$Z = \sqrt{R^2 + Xc^2}$$

This is all what EBIS measures. It does not measures water, muscle, fat or anything else. These are all CALCULATED.



# MODELS: PHYSICAL, ELECTRICAL, MATHEMATICAL AND GEOMETRICAL



10/21





### **RESISTIVITY vs RESISTANCE**



12/21

# PHYSICAL MODEL IN BIA

#### How the RJL BIA Instruments work



M Abdel-Mageed S, I Mohamed E. Total Body Capacitance for Estimating Human Basal Metabolic Rate in an Egyptian Population. Int J Biomed Sci. 2016 Mar;12(1):42-7.











# FACTORS AFECTING BIA RESULTS



Campa *et al* 2024. High-standard predictive equations for estimating body composition using bioelectrical impedance analysis: a systematic review. J Transl Med. 2024 May 29;22(1):515. doi: 10.1186/s12967-024-05272-x. Device used and the subject's:

- age,
- geographical ancestry, healthy status,
- physical activity level,
- gender.

106 predictive equations 19 (underage), 26 (adults), 19 (athlets), 26 (elderly), 16 (diseases)

Lukaski et al.-1988 Heitman et al.-1990 Zillikens et al.-1991 Guo et al.-1993 Jakicic et al.-1998 Janssen et al.-2000 Morrison et al.-2001 Leman et al.-2003 Pietrobelli et al.-2003 Kyle et al.-2003 Masuda et al.-2004 Kontogianni et al.-2005 Rush et al.-2006 Nielsen et al.-2007 Wickramasinghe et al.-2007 Sluyter et al.-2010 Oshima et al.-2010 Van Zyl et al.-2019 Dasgupta et al.-2019 Nguyen et al.-2020 Kanellakis et al.-2020 Xu et al.-2020 Gutiérrez Marin et al.-2021 Da Costa et al.-2022 Sardinha et al.-2023









# **EBIS AND TISSUE DAMAGE**





**FIG. 2.** Plots of spectral data in the complex impedance plane grouped by radiation dose at 1, 2 and 3 months post-treatment. Values shown represent measurement averages from all animals in each dose group at a given time. ( $\bigcirc$ ) Control; ( $\bigcirc$ ) 1 month; ( $\nabla$ ) 2 months; ( $\blacksquare$ ) 3 months.

Paulsen *et al.* 1999. In vivo electrical impedance spectroscopic monitoring of the progression of radiationinduced tissue injury. Radiat Res;152(1):41-50. (Tissue: normal muscle, male Sprague-Dawley rats).







# **BIOLOGICAL TISSUES AND BARRIERS**

| células del cartilago Células Secretoras                              |        | Water | Resistivity |
|-----------------------------------------------------------------------|--------|-------|-------------|
| células adiposas                                                      | Tissue | %     | Ωm          |
| las nerviosas<br>células óseas<br>células óseas<br>células sanguineas | Kidney | 78.5  | 1.4         |
|                                                                       | Spleen | 78.5  | 1.2         |
|                                                                       | Brain  | 77.0  | 3.0         |
|                                                                       | Liver  | 75.0  | 2.0         |
|                                                                       | Mucle  | 75.5  | 1.4         |
|                                                                       | Skin   | 68.0  | 4.0         |
|                                                                       | Fat    | 12.5  | 8.0         |

Correlation between water content and resistivity in human tissues

16/21

#### **Cell membranes and epithelia**





scientific instruments



# LIFE STYLE, HEALTH AND DISEASE



https://www.pinterest.com /pin/461056080573868400/

Healthy nutrition pyramid, according to the **School of Nutrition at Harvard University** 











# PHYSISOPATHOLOGY OF CRONICOPATHOLOGY



Cani & Delzenne. 2007. Gut microbiota as a targer for energy and metabolkiud homeostasis. Curr Opin Clin Nutr Metab Care;10(6):729-34.

González-Correa *et al* 2017. The colon revisited or the key to wellness, health and disease. (Medical Hypothesis; 108:133-143).











### PATHOPHYSIOLOGY OF CHRONICOPATHY



# **METAINFLAMMATION & EBIS**



🕥 mutua 🚾

HIMB modulation (T1: start, T2 12 days, T3 24 days, T4 36 days).

Experimental Group (*n*=6)

**O** Control Group (*n*=5)

Lean Group (*n*=9)

UNIVERSITY OF OSLO

cientific instruments

Tapasco-Tapasco LO,<br/>CorreaGonzalez-<br/>CA, Letourneur A.<br/>2023.2023.Phase angle and<br/>impedance ratio as<br/>meta-inflammation<br/>biomarkers after a<br/>colon cleansing protocol in a<br/>group of overweight young<br/>women. En revision.



### **I ADVOCATE FOR:**

- 1. Not stating anymore that the electrical **current "crosses" the cells** at higher frequencies.
- All devices should provide readings for a minimum of 3 well established frequencies (i.e., 5, 50 & 100 kHz), as well as give the parameters for the Cole and the geometrical model.
- 3. All devices should give the possibility of using **any of the published equations**.
- 4. All devices should be **calibrated against a well-defined electrical dummy** so that they give the same readings.
- 5. Values should be converted to **resistivity**, rather that using raw data.
- 6. Researchers should try to develop a universal equation for body composition.
- 7. Many other impedance indexes should be explores, like  $PA_{max}$  (instead of  $PA_{50kHz}$ ) and  $Z_{\infty}/Z_{0}$  (instead of  $Z_{200kHz}/Z_{05kHz}$ ) and geometrical factors developed for planar arrays.
- 8. Metainflammation is common to all chronic diseases and should be more explored, for instance with  $PA_{max}$ .





