

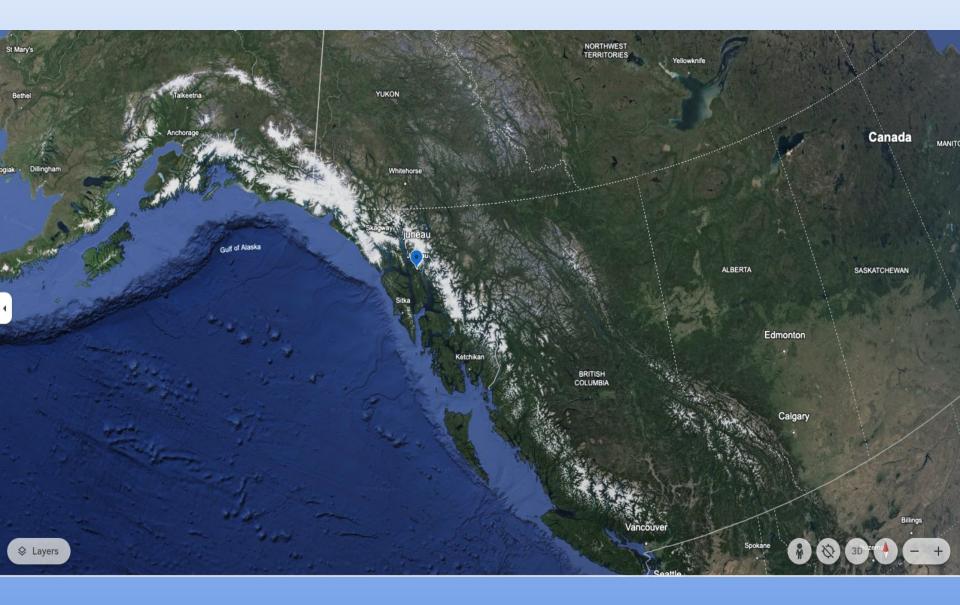
Alaska Seafood and the importance of bioimpedance current and future applications

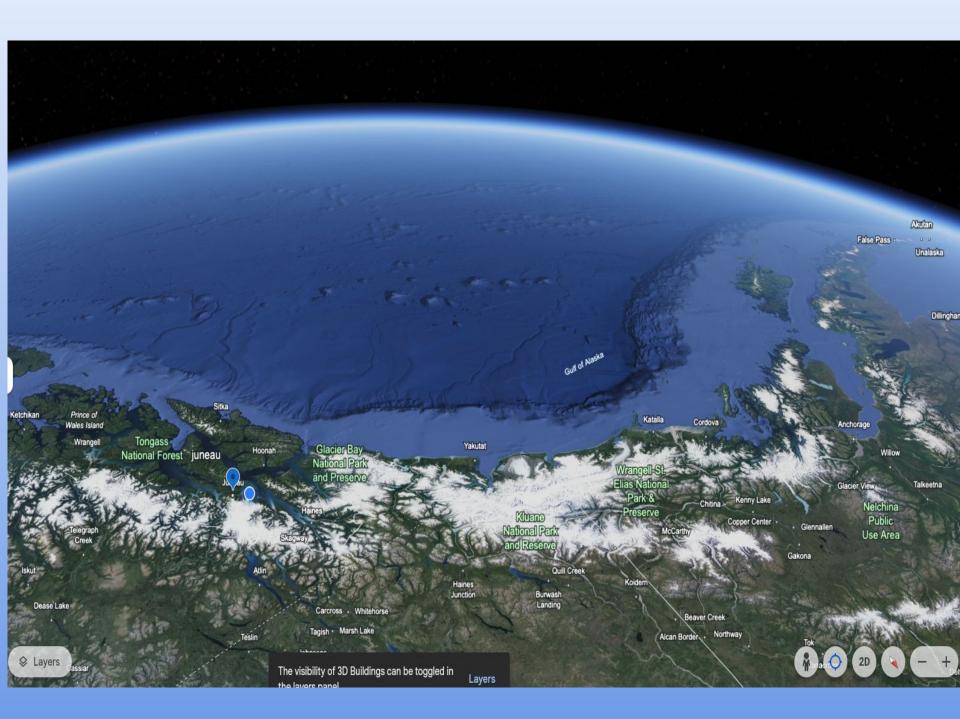
Marlin Keith Cox - Bialume Tech Inc., Juneau AK (keith@bialume.com)

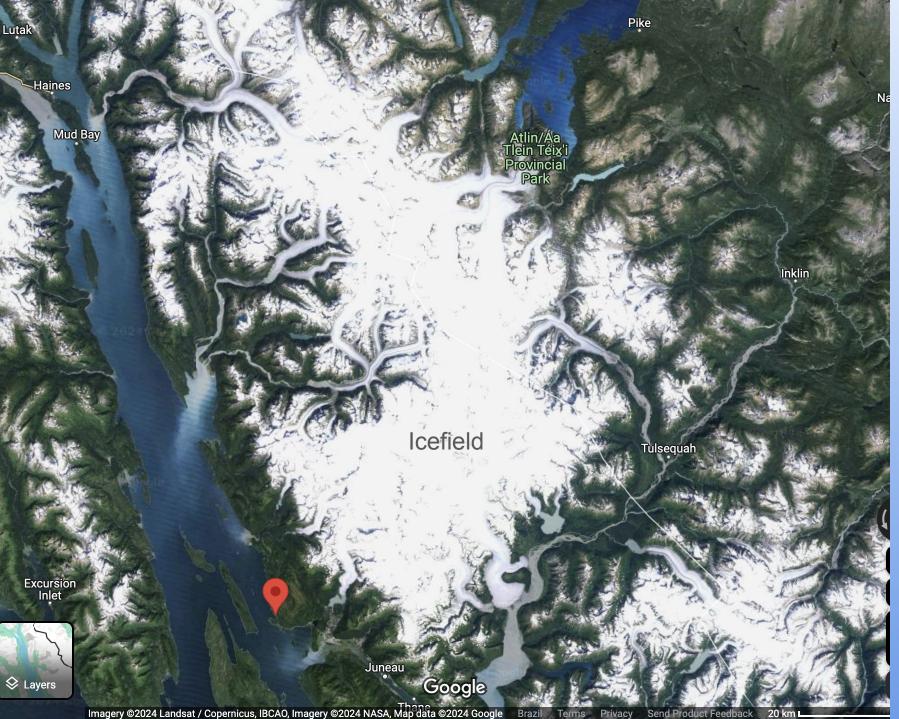
Christina Dewitt - Oregon State University, Astoria OR Pedro Bertemes Filho - Universidade do Estado de Santa Catarina

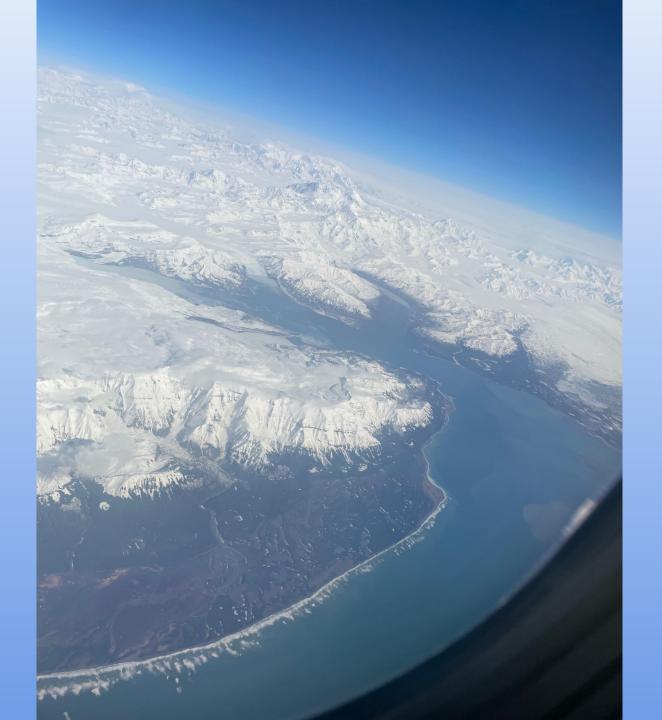
MIAMI

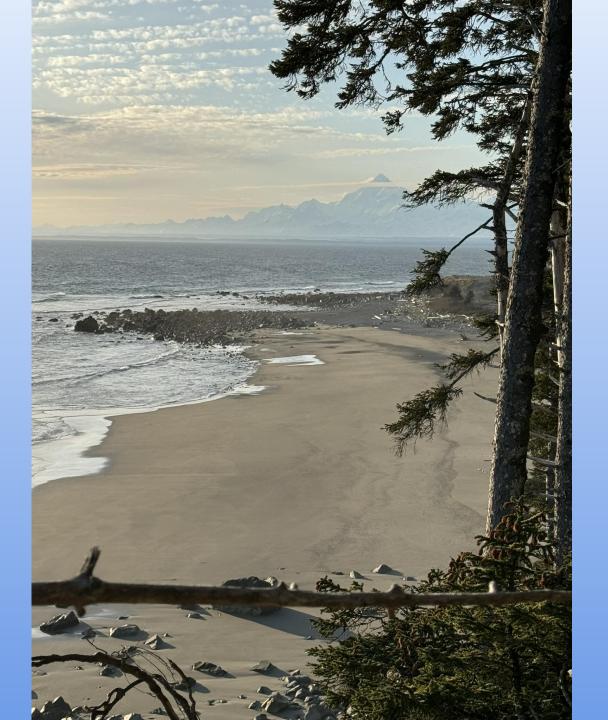
RIVERENCE®









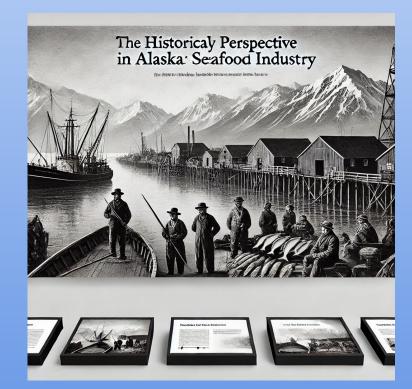

1.4km deep30 meters of snowper year and no rain

Alaska Seafood

 Annual Harvest: Over 5 billion pounds of seafood harvested annually.
 Economic Value: Valued at approximately \$6 billion annually.
 Employment: Provides over 60,000 jobs.

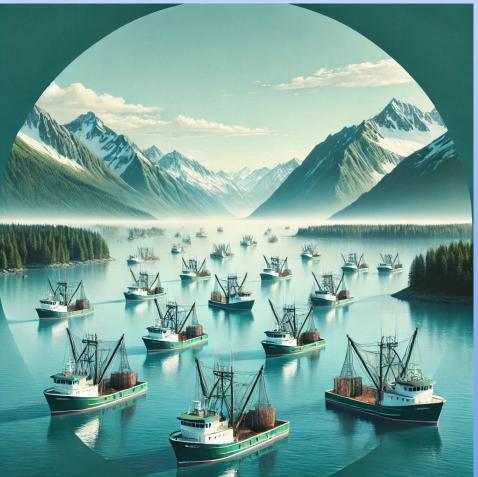
4. Wild Salmon: Over 95% of wild salmon in the U.S. comes from Alaska.

- 5. Halibut: Alaska produces over 80% of North America's wild halibut.
- 6. Export: 60% of Alaska seafood is exported globally.
- 7. Pollock: Alaska pollock fishery is the largest by volume in the U.S.
- 8. Crab: Home to world-famous King, Snow, and Dungeness crab, with millions of pounds harvested annually.



Historic Seafood in Alaska

- Indigenous communities have relied on seafood for thousands of years, forming the backbone of their sustenance and culture.
- Salmon, halibut, and shellfish were traditionally harvested using sustainable practices.
- The late 19th century saw the rise of commercial fishing, driven by the establishment of canneries.
- Early challenges included overfishing, limited regulations, and the depletion of key species.
- The 1959 Alaska Statehood Act mandated sustainable fisheries management, setting a global standard.



Alaska Seafood on the World Stage

Exports seafood to over 100 countries, U.S.

Wild Alaska seafood is prized for its pu Major export species include pollock, s Plays a critical role in the global seafor

Facing the Future

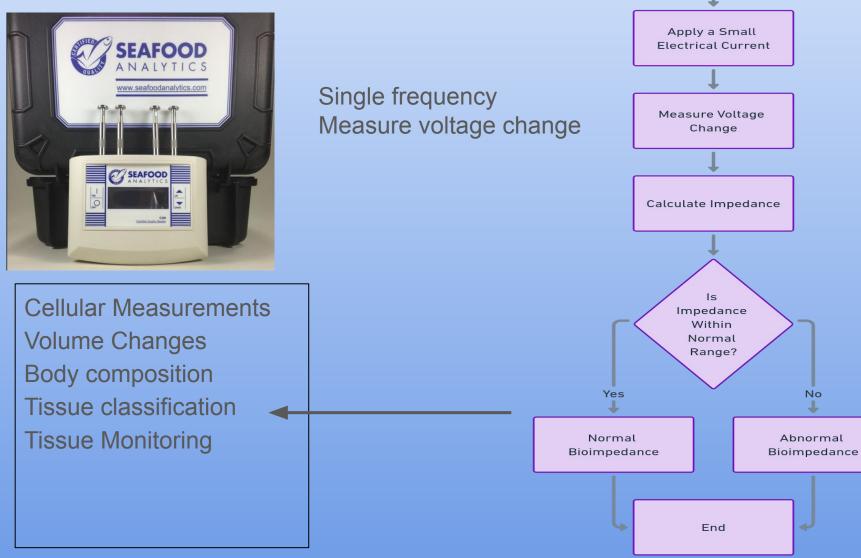
Challenges:

- Climate change affects fish populations and habitats.
- Increasing global competition in seafood markets.

Opportunities:

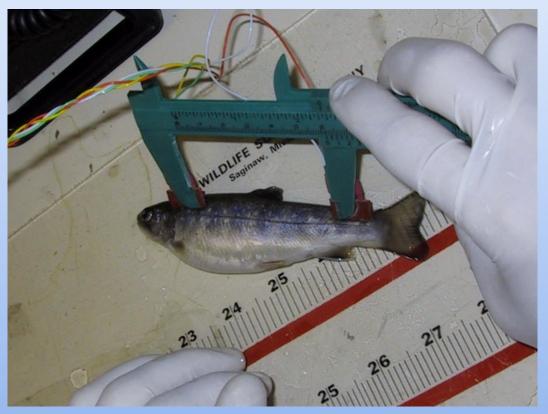
- Innovations in fishing technologies.
- Expanding markets for sustainably sourced seafood.
- Strengthening Alaska's reputation as a leader in sustainability.

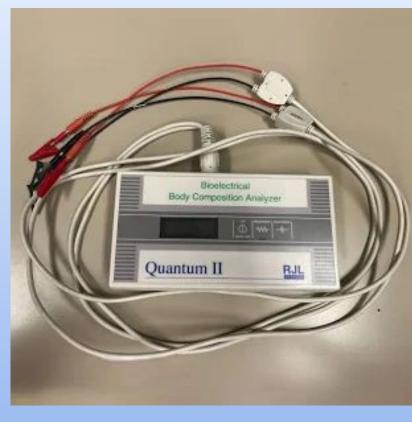
<section-header>


So bioimpedance and aspects of food quality in terms of.....

Post-Harvest

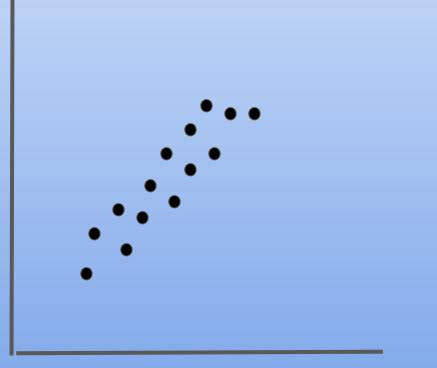
- Pre harvest
 Harvest
- 3. Future application


Who we are?


- CQFoods
- Previously Seafood Analytics
- We manufacture bioimpedance devices.

Start

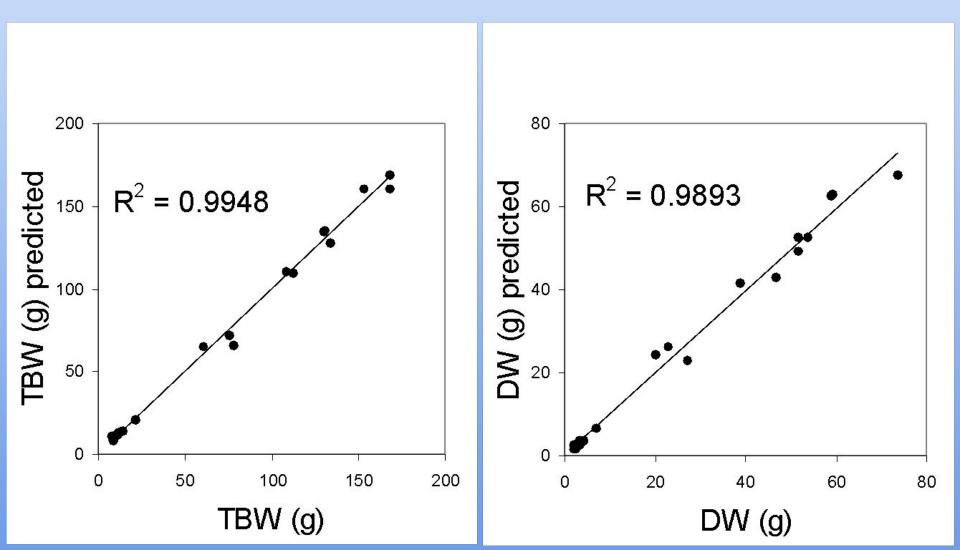
Attach Electrodes to the Body

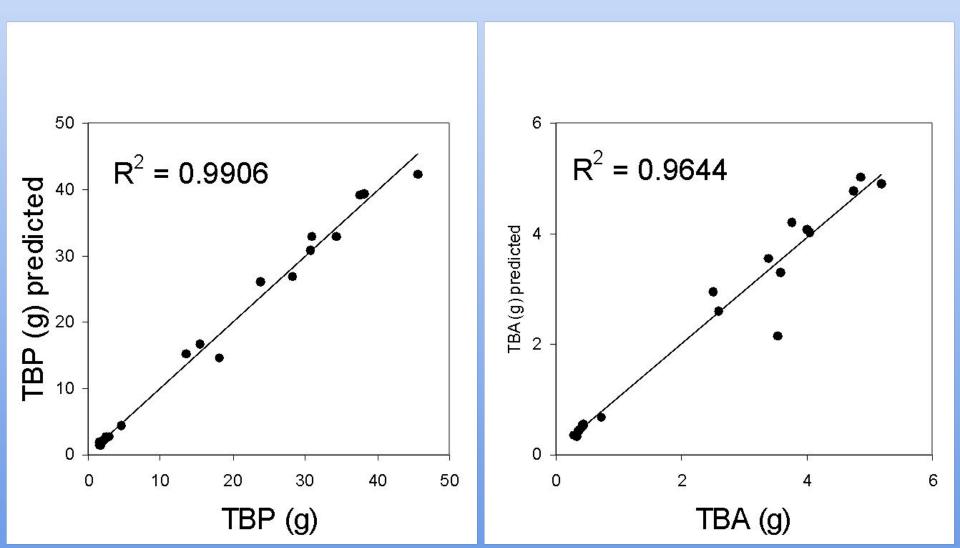

	100	-	1.5	1.2	1000		122	84.6	100		7.3	1.00	
-	- 13	-	attents and and		140°	1 strange	an a	- 135	II III	- Indea		 TELEVISIA .	11111111

Can bioimpedance be used to track body composition in fish?

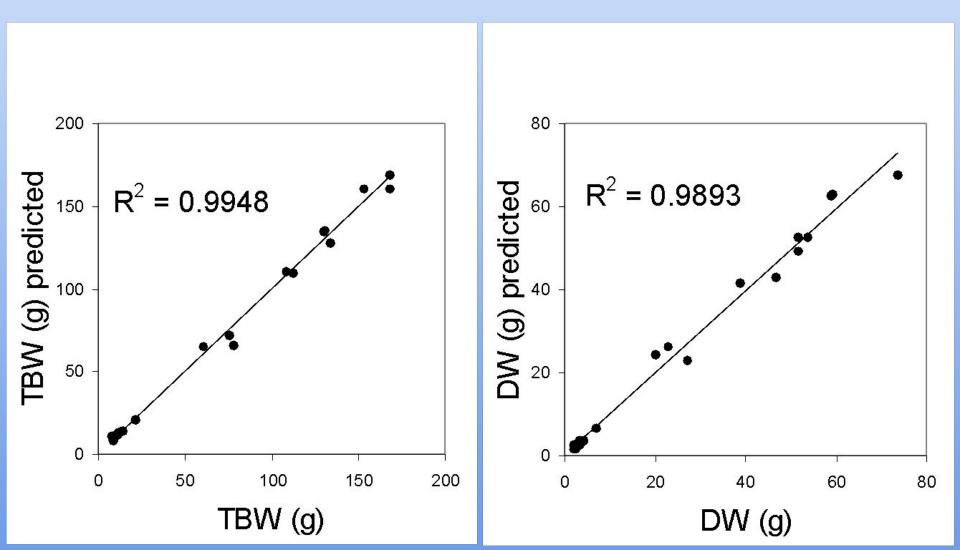
- Methods
- 1. Lets use fish
- 2. Force them into different nutritional states
- 3. Measured resistance and reactance from 50 brook trout
- 4. Sacrificed the fish and measured body composition in lab
- 5. Compared the two values (perfect score = 1.0)
- 6. Used a 50kHz RJL System Quantum II.

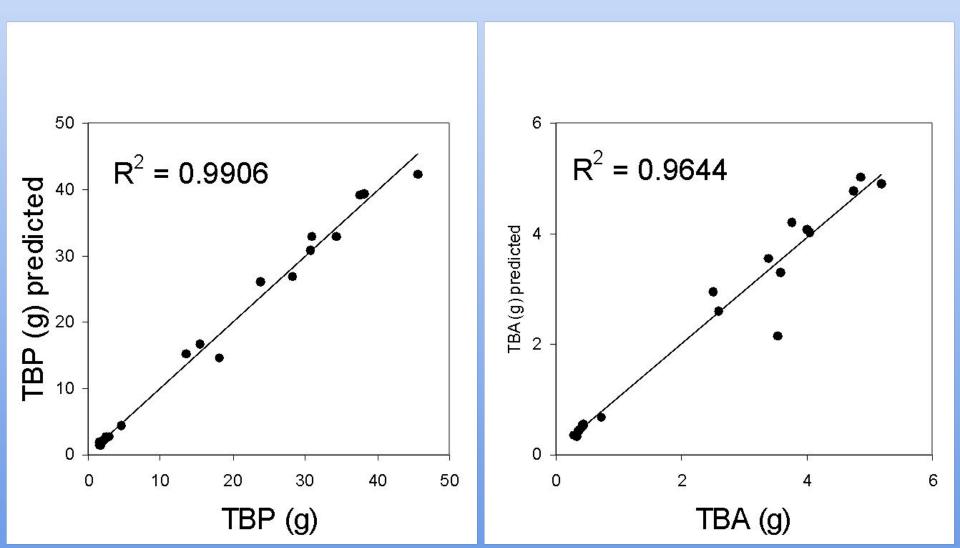
Can we track body composition? First need a model?


Electrical equation


Fat, Protein, Water, Fat free mass

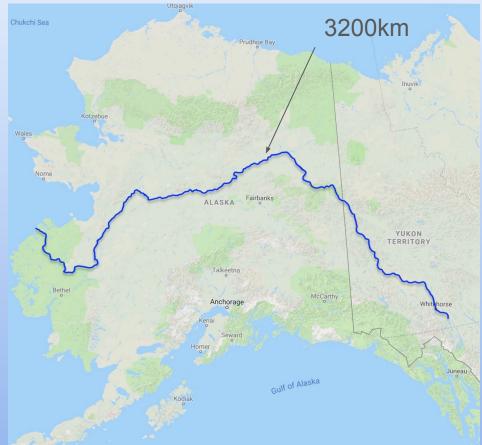
Obtained	Name	Symbol	Electrical Equation	Volume Symbol	Electrical Volume Equation
Measured	Resistance in series	R	R	Rs _v	$Ld^2 \cdot R^{-1}$
Measured	Reactance in series	Xc	Xc	Xc _v	$Ld^2 \cdot Xc^{-1}$
Derived	Resistance in parallel	Rp	$R + (Xc^2 \cdot R^{-1})$	Rp_{v}	$Ld^2 \cdot Rp^{-1}$
Derived	Reactance in parallel	Хср	Xc + (R ² ·Xc ⁻¹)	Xcp _v	Ld ² · Xcp ⁻¹
Derived	Capacitance (farad)	Cpf	(1·10 ⁻¹²)· (314000·Xcp) ⁻¹	Cpf_{v}	Ld ² · Cpf ⁻¹
Derived	Impedance serie	sZs	$Sqrt(R^2 + Xc^2)$	Zs _v	$Ld^2 \cdot Zs^{-1}$
Derived	Impedance parallel	Zp	(Xc*R)/sqrt(Xc ² +R ²)	Zp _v	$Ld^2 \cdot Zp^{-1}$
Derived	Phase angle (radians)	Phase angle	Arctan · (Xc · R ⁻¹)	na	na

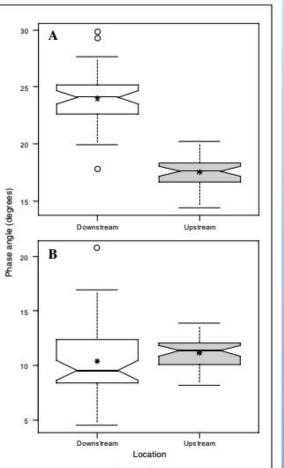

Total body water (TBW) and Dry weight (DW)


Total body protein (TBP) and Total body ash (TBA)

Total body water (TBW) and Dry weight (DW)

Total body protein (TBP) and Total body ash (TBA)

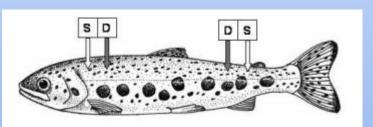


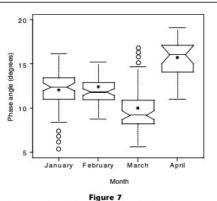


https://youtu.be/larZQFsDAiM

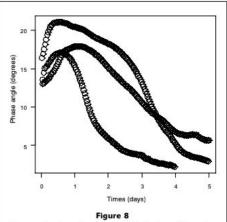
Figure 6

Notched boxplots of phase angles and means (*) calculated from bioelectrical impedance analysis measurements taken on the dorsal (**A**) and ventral (**B**) sides of chum salmon (*Oncorhynchus keta*) at both the mouth of the Yukon (downstream) (*n*=47) and 2000 km upstream (*n*=40). Notches extend to ±1.58 interquartile range/ \sqrt{n} and represent roughly 95% confidence intervals. Open circles (\bigcirc) represent outliers determined by a Grubbs test.


Electrical phase angle as a new method to measure fish condition


M. Keith Cox (contact author)

Ron Heintz


Email address for contact author: Keith.Cox@noaa.gov

NOAA-National Marine Fisheries Service Alaska Fisheries Science Center – Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801

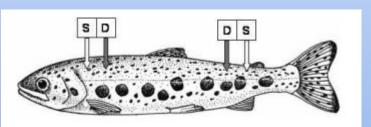
Notched boxplots of phase angle means (*) for Pacific herring (Clupea pallasii) (n=229) captured during January, February, March, and April of 2007 in Sitka Sound, Alaska. Open circles (\bigcirc) represent outliers determined by a Grubbs test.

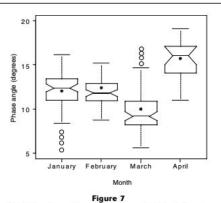
Phase angles for postmortem adult pink salmon (Oncoryhnchus gorbuscha) (n=3) measured every 10 minutes for 5 days while stored at temperatures <11°C.

30 20 Phase angle (degrees) Downstream Upstrea B 20 15 10 5 Downstream Upstream Location

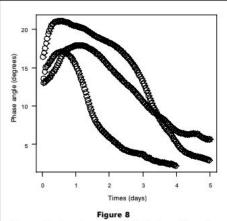
Figure 6

Notched boxplots of phase angles and means (*) calculated from bioelectrical impedance analysis measurements taken on the dorsal (**A**) and ventral (**B**) sides of chum salmon (*Oncorhynchus keta*) at both the mouth of the Yukon (downstream) (*n*=47) and 2000 km upstream (*n*=40). Notches extend to ±1.58 interquartile range/ \sqrt{n} and represent roughly 95% confidence intervals. Open circles (\bigcirc) represent outliers determined by a Grubbs test.


Electrical phase angle as a new method to measure fish condition


M. Keith Cox (contact author)

Ron Heintz


Email address for contact author: Keith.Cox@noaa.gov

NOAA-National Marine Fisheries Service Alaska Fisheries Science Center – Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801

Notched boxplots of phase angle means (*) for Pacific herring (Clupea pallasii) (n=229) captured during January, February, March, and April of 2007 in Sitka Sound, Alaska. Open circles (o) represent outliers determined by a Grubbs test.

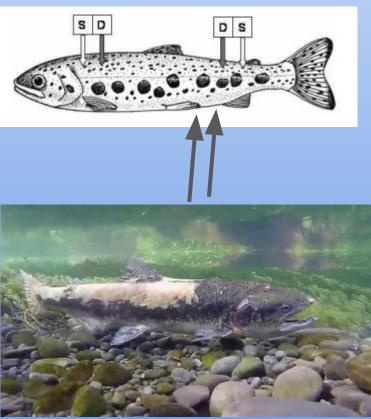
Phase angles for postmortem adult pink salmon (Oncoryhnchus gorbuscha) (n=3) measured every 10 minutes for 5 days while stored at temperatures <11°C.

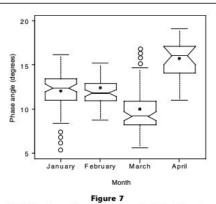
30 А 25 20 Phase angle (degrees) 15 Downstream Upstream B Downstream Upstream

Notched boxplots of phase angles and means (*) calculated from bioelectrical impedance analysis measurements taken on the dorsal (**A**) and ventral (**B**) sides of chum salmon (*Oncorhynchus keta*) at both the mouth of the Yukon (downstream) (n=47) and 2000 km upstream (n=40). Notches extend to ± 1.58 interquartile range/ \sqrt{n} and represent roughly 95% confidence intervals. Open circles (\bigcirc) represent outliers determined by a Grubbs test.

Sigure (

Location


Electrical phase angle as a new method to measure fish condition


M. Keith Cox (contact author)

Ron Heintz

Email address for contact author: Keith.Cox@noaa.gov

NOAA-National Marine Fisheries Service Alaska Fisheries Science Center – Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801

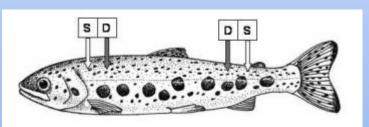
Notched boxplots of phase angle means (*) for Pacific herring (Clupea pallasii) (n=229) captured during January, February, March, and April of 2007 in Sitka Sound, Alaska. Open circles (\bigcirc) represent outliers determined by a Grubbs test.

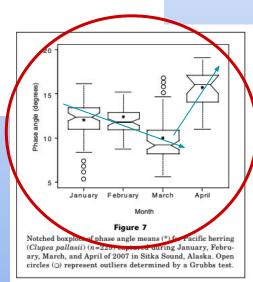
Phase angles for postmortem adult pink salmon (Oncoryhnchus gorbuscha) (n=3) measured every 10 minutes for 5 days while stored at temperatures <11°C.

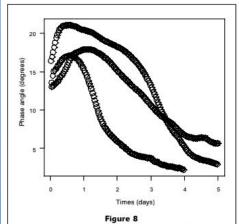
30 8 А 25 20 Phase angle (degrees) 15 Downstream Upstream 0 B 20 15 10 5 Downstream Upstream Location

Figure 6

Notched boxplots of phase angles and means (*) calculated from bioelectrical impedance analysis measurements taken on the dorsal (**A**) and ventral (**B**) sides of chum salmon (*Oncorhynchus keta*) at both the mouth of the Yukon (downstream) (*n*=47) and 2000 km upstream (*n*=40). Notches extend to ±1.58 interquartile range/v*n* and represent roughly 95% confidence intervals. Open circles (\bigcirc) represent outliers determined by a Grubbs test.


Electrical phase angle as a new method to measure fish condition

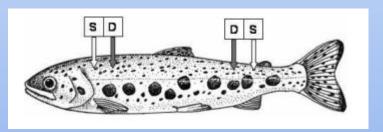

M. Keith Cox (contact author)

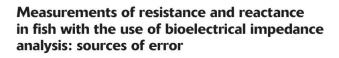

Ron Heintz

Email address for contact author: Keith.Cox@noaa.gov

NOAA-National Marine Fisheries Service Alaska Fisheries Science Center – Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801

Phase angles for postmortem adult pink salmon (Oncoryhnchus gorbuscha) (n=3) measured every 10 minutes for 5 days while stored at temperatures <11°C.

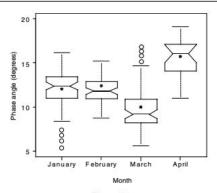

Electrical phase angle as a new method to measure fish condition


M. Keith Cox (contact author)

Ron Heintz

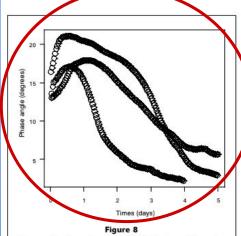
Email address for contact author: Keith.Cox@noaa.gov

NOAA-National Marine Fisheries Service Alaska Fisheries Science Center – Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801


M. Keith Cox (contact author)¹

Ron Heintz¹

Kyle Hartman²


Email address for contact author: Keith.Cox@noaa.gov

¹ National Marine Fisheries Service Alaska Fisheries Science Center Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801

Figure 7

Notched boxplots of phase angle means (*) for Pacific herring (Clupea pallasii) (n=229) captured during January, February, March, and April of 2007 in Sitka Sound, Alaska. Open circles (\bigcirc) represent outliers determined by a Grubbs test.

Phase angles for postmortem adult pink salmon (Oncoryhnchus gorbuscha) (n=3) measured every 10 minutes for 5 days while stored at temperatures <11°C.

30 А 25 20 Phase angle (degrees) 15 Downstream Upstream 0 B 15 10 Downstream Upstream Location

Figure 6

Notched boxplots of phase angles and means (*) calculated from bioelectrical impedance analysis measurements taken on the dorsal (**A**) and ventral (**B**) sides of chum salmon (*Oncorhynchus keta*) at both the mouth of the Yukon (downstream) (*n*=47) and 2000 km upstream (*n*=40). Notches extend to ±1.58 interquartile range/v*n* and represent roughly 95% confidence intervals. Open circles (\odot) represent outliers determined by a Grubbs test.

Brook, rainbow, pollock, cod, Eulachon, herring, sand lace, shark, mullet, ocean perch, halibut, king, chum, pink, sockeye and silver salmon, rockfish, smolts, flounder, yellow eye snapper, catfish, bass, all using impedance.

Alaska Seafood Industry: Navigating a Financial Crisis

- Alaska's seafood industry lost \$1.8 billion from 2022 to 2023 (NOAA report).
- Environmental, economic, and regulatory challenges are driving the crisis.
- Ripple effects extend to jobs, local businesses, and global markets.

Environmental Challenges

- Rising ocean temperatures and shifting ecosystems are affecting key species.
- Significant impacts on salmon, crab, and other fisheries.
- Habitat degradation disrupting traditional fishing patterns.

Economic Pressures

- Increased competition in global seafood markets has driven down prices.
- Rising fuel and labor costs are straining fishing operations.
- Reduced profitability threatens the sustainability of the industry.
- The U.S. fisheries model focuses on volume rather than quality, creating added challenges in premium markets.

Regulatory Challenges

- Fishery closures and quota reductions to protect declining populations.
- Strict regulatory measures are limiting harvests, exacerbating financial pressures.

Impact on Industry and Jobs

- Nearly 7,000 job losses in Alaska's seafood sector.
- Ripple effects on local businesses, seafood processors, and transportation industries.
- Decline in economic activity in coastal communities.

Responses and Future Outlook

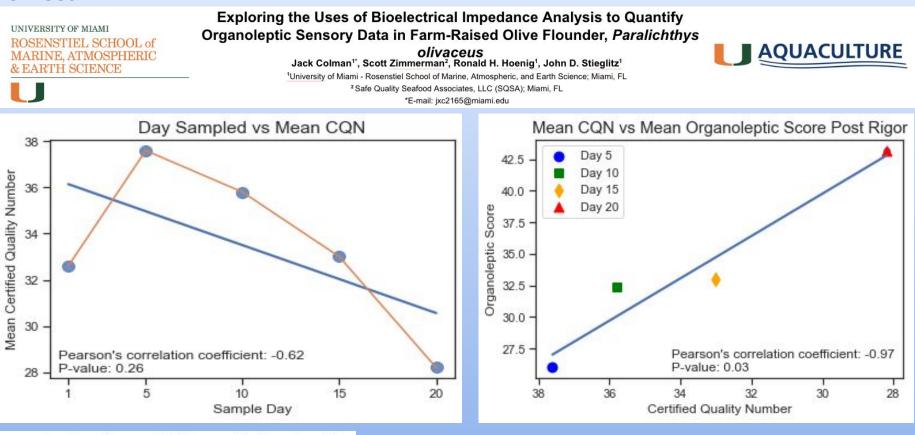
- Government task force to address the crisis; policy recommendations expected by January.
- Industry efforts include diversification, investment in sustainable practices, and exploring new markets.
- A long road ahead requiring coordination and innovation.
- Creating a quality vs. volume fishery.

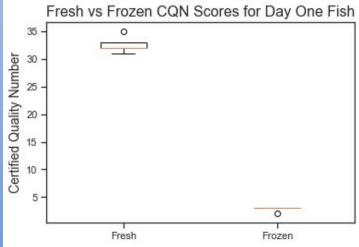
Harvest

Why is quality an issue.

- Shortens shelf life
- Value can decrease but only at the end
- Once quality is lost it is not regained
- Dock prices are low

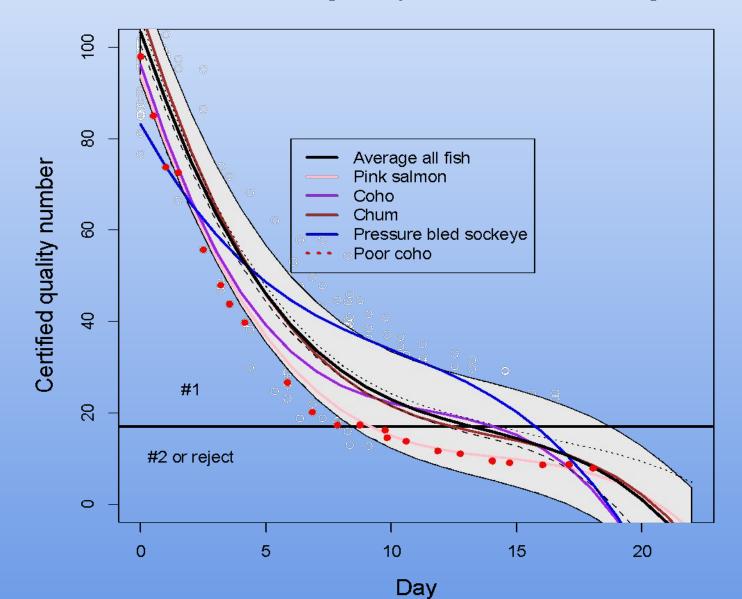
Harvest


Measuring quality by smell


Sweet Seaweed Cucumber Melon Mild Neutral Metallic **Fresh Cut** Grass Briny Fishy Ammonia Sour Sulfurous

Rancid Musty Putrid Fruity (overripe) Chemical Medicinal Garlic-like Cabbagy Oniony Yeasty Vinegar-like **Bleach-like** Toffee Caramel Burnt Sweaty Leather-like Earthy Barnyard Manure-like

Harvest



Quality Grade Time since harvest Shelf life remaining Frozen or not

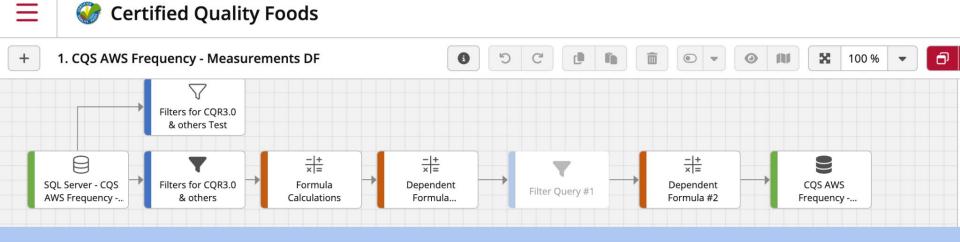
Degradation and quality

Different handling and species with salmon average

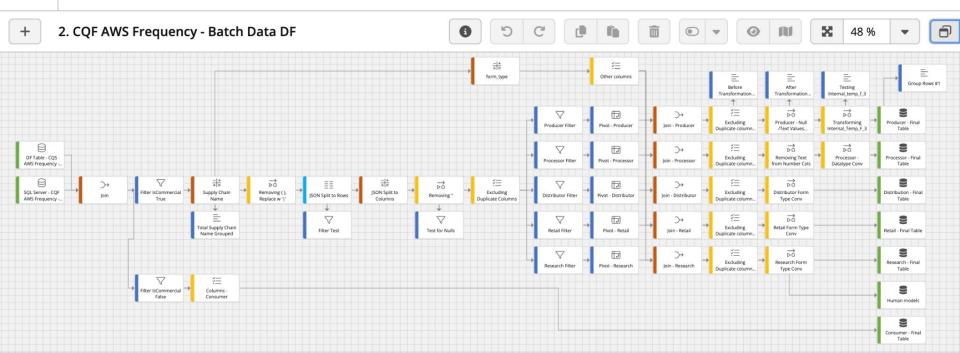
Needs of the customer to use bioimpedance

Near real time

Device and driver


Better functionality Smaller Multiple frequency Inexpensive

7:14 . ? ●	10
Tender-Long Form	Sele
Enter or Search for Product	Tend tri
Enter Boat Name or 5-Digit CFEC ID	Dri
Enter Tender Name or 5-Digit CFEC ID	Nu
District Location	Lot 14
Catch Method	Inte 32
Bled: No Yes	Inte 36
# of Fish Bled	33
# of Fish NOT Bled	In
Floating: No Yes	

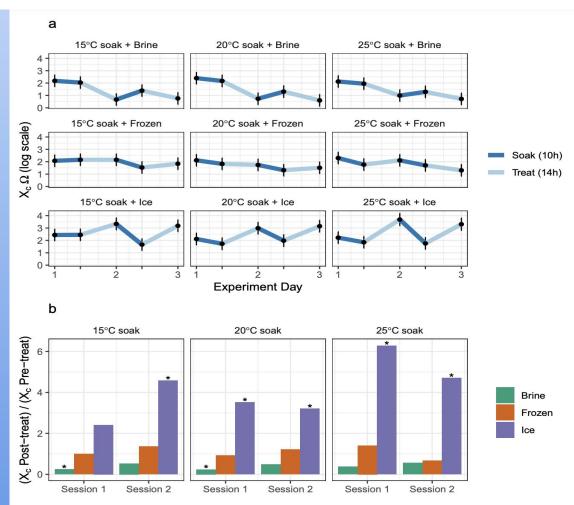

10:06
Selected Product Salmon sockeye whole
Tender Name OR 5- Digit CFEC ID trina marie
Drift Net
Nushagak
Lot # 145
Internal Temp F: 32
Internal Temp F: 36
Internal Temp F: 33
Initials and Comments
Take Measurements

Database


```
🎯 Certified Quality Foods
```


← → C == cq	qf.clicdata.com/binder/	viewer/10363						0	≈ ☆	S 💩 🕈 🖸 🛧 🎒 :
📃 🔇 Cert	tified Quality l	Foods								D ? 4 2 .
CQFoods V1.1	Ť	Ŷ								
Producer	Processor	Distrik	oution	Retail	Research					
Date Selector	Company	Supply chain	User	s	Product	Suppliers	Boat or location	timestamp		Comments
					[Entrance Point	05/21/2024 11:36 AM		sophie
Today	Select All	Select All	Select All	÷	Search	None	Entrance Point	05/21/2024 11:36 AM	104.3	sophie
Last 7 Days	Gulf of Maine R	Inbound	abaukus(@gmri.org	Select All	Entrance Point	Entrance Point	05/21/2024 11:36 AM		sophie
Last 20 Dava					Saithe Whole (Atl. Pollock)		Entrance Point	05/21/2024 11:35 AM		test
Last 30 Days							Entrance Point	05/21/2024 11:35 AM	15.9	test
Last 60 Days							Entrance Point	05/21/2024 11:35 AM		test
From							Entrance Point	05/21/2024 11:38 AM	29.1	kyle
04/07/2024 👻							Entrance Point	05/21/2024 11:38 AM		kyle
То							Entrance Point	05/21/2024		kyle
06/05/2024 -								9		·
FAQ's	Export all	Instruction	s	Export filtered				Total numl of measur		

Future

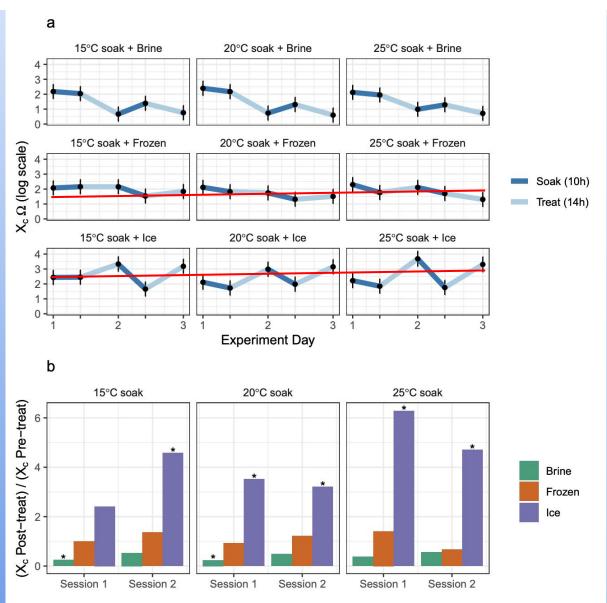

Assessing the potential of bait reuse in a large-scale SMART drumline program

Craig Bell 1, Paul A. Butcher 1,2, Keith Cox 3, ,2, Stephen Morris 4, and Brendan Kelaher 1 1 National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia

2 NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia

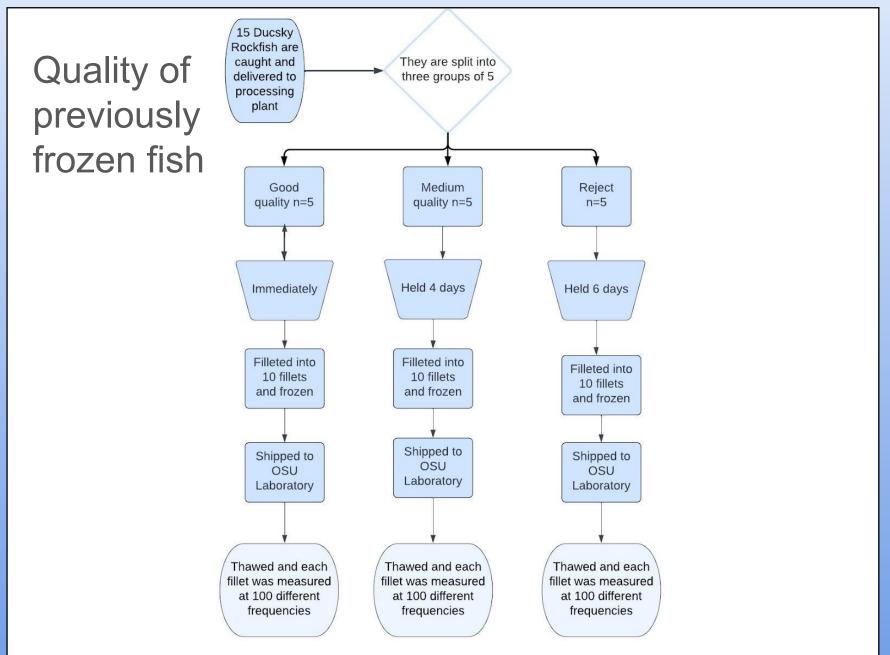
3 National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories 11305 Glacier Hwy Juneau, Alaska 99801

4 NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia



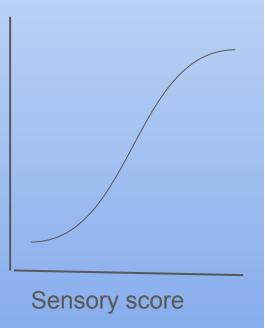
Southern Cross University

Future


Assessing the potential of bait reuse in a large-scale SMART drumline program

- Ice and freezing worked best
- Different equations were tested
- Brining was the worst

Future

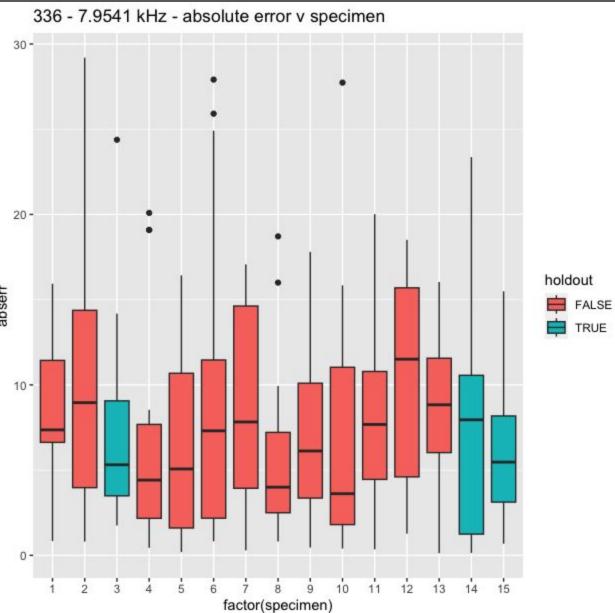

Bioimpedance Predictive Models for Sensory Scores on Previously Frozen Finfish

Keith Cox - CQ Foods, Juneau AK Christina Dewitt - Oregon State University, Astoria OR Paul Koenig - Oregon State University, Astoria OR Jesse Trushenski - Riverence, Rodchester WA

America's Finest Trout

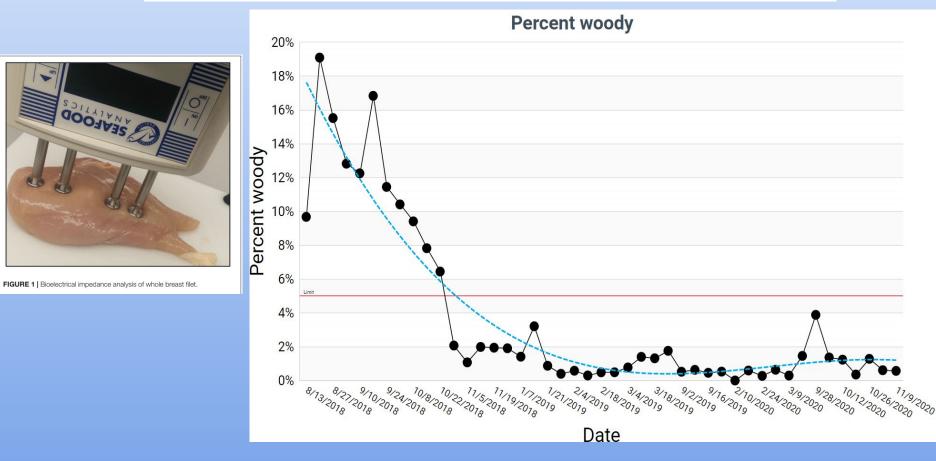
Frequency (Hz)	IS AM Magnitude (C)	Frequency (Hz)	Phase		Start Frequency	Body Impedance 100	Hz
100	125.9262924	100			Points	100	
107.9801025	208.4634247 161.003891	107.9601025	328.7500305 309.0910339		Amplitude Enable	600	en//pp
125.9015884	90.83753204	125.9015884	305.1504822		Stop Frequency	200000	Hz
135.9488604	58.92863083	135.9486694	337.5605774		Logarithmic	1	
146.7975150 158.5121002	81.81140137	146.7975150	-1.337897182		Power Mode Transimpedance	Low Power	pF
158.5121002	96.53781128	158.5121002	-9.711104393		Sample Rate		sps
184.8204041	73.68148041	184.8204041	-5.896260262		Internal RTIA Set		0
199.5692506	84.03040851	199.5692596	-1.981430531		Calibration Resid		0
215.4950867 232.6918182	82.84349823	215.4950897 232.6918182	-6.08879994 -2.769347429		Filter Level	Level 1.1	
232.0918182 251.2908643	83.27751923	251 2608643	-2.769347429		Hanning Window DFT Number	8192	
271.3117371	79.85466765	271.3117371	-3.025654554		PGA Gain Select		
292 9927075	80.59131744	292.9627075	-1.163848281				
316.3414307	81.07154083	316.3414307	-2.128114223				
368.844696	81,40858469	341.5857849 368.844696	-0.4355385005				
338.2788696	\$1.3023905	398.2788996	-0.8472059905				
430.0519507	80.43151093	430.0619507	-0.2315688282				
464.3813171	80.09856224	464.3813171 501.4394228	-1.019624501				
501.4394226 541.454834	80.77728271 80.56060791	541,454834	-0.4700091183 -0.4706708193				
584 6634521	80.76857758	584 6634521	-0.2364968667				
631.3201904	80.34275055	631.3201904	-0.5011257529				
681.7001953	80.56140137	681.7001953	-0.1578434706				
736.1005859	80.47911072	736.1005859 794.0421031	-0.1567312032				
858.2714233	80.89109344	858.2714233	-0.2109495252				
926.7623291	80.64801025	926 7623291	-0.2351000203				
1000.718933	80.5749588	1003 718933	-0.1703451872				
1080.577393	80.49906921 80.58679962	1166 808472	0 204298839				
1250.921021	80.40048218	1259 921021	-0.1251870894				
1360.463989	80.76290131	1360.463989	-0.1275280416				
1460.030518	80.64070892	1469.030518	-0.1301161796				
1586.29062	80.85958405 80.81205292		-0.07936900109				
1849.532715	80.6184082	1849.532715	-0.0483985804				
1997.127319	80.71374512	1997.127319	-0.07676424831				
2156.500244	80.52347565		-0.07853772491				
2328.591064 2514.415039	80.52347565 80.48315002		-0.04205140844				
2715.067871	80.53370667	2715.067871	0.02664818801				
2931.733154	80.52755737		-0.01962189935				
3165.688477 3418.313721	80.45724701		0.03795522451				
3418.313721 3991.099633	80.45927429 80.40066528		0.01968304254 0.04626559839				
3965.6521	80.50621796	3985.6521	0.04969163612				
4303.711429	80.42411804	4303.711426	0.09330342452				
4647.151855	80.4222641		0.1022550985				
5017.999512 5418.440918	80.49567413	5017.999512 5418.440918	0.00166758253				
5850,837891	80.50330363	5850 837891	0.1659768042				
6317.741211	80.45308685	6317.741211	0.1634949893				
6821.90332	80.53063202	6821.90332	0.2005651742				
7366.29834 7954.13623	80.50853729 80.55796814	7366.29834 7954.13623	0.2623439133 0.236490041				
8588.884766	80.55165863	8588.884766	0.2578122616				
9274.286133	80.43175507	9274,286133	0.3140950799				
10014.38379	80.51274109	10014.38379	0.3217393458				
10813.54199	80.47758484	10813.54199	0.3608750701				
11676.47363	80.40865326 80.45381927	11676.47363	0.3957341909 0.4546396136				
13014.42188	80.49932098	12014.42188	0.4928641915				
14700.86621	80.55852509	14700.86621	0.5169219971				
15874.01074	80.53916168	15874 01074	0.5769128203				
1/140.7/344	80.45141602	18508.625	0.8338024735				
19985-63086	80.58407593	19985-63086	0.7405718565				
21580.50586	80.51397705	21580.50586	0.7503323555				
23302.05234	80.55068207	23302.65234	0.8314989209				
25162.22852	80.49880219 80.47968292	25162 22852 27170 19922	0.889388442				
29338.41016	80.53881836	29338.41016	1.115769029				
31679.64453	80.42970276	31679 64453	1.178091526				
34207.71094	80.44425201	34207 71094	1.260675073				
30937.52344	80.3995285	36937.52344 39885.17578	1.513694644				
43068.05469	80.43347931	43058.05459	1.661192536				
46504.92969	80.39663696	46604 92969	1.79392457				
50216.07031	80.45964813	50216.07031	1.944395506				
58550.44531	80.4888916	58550.44531	2.319360495				
63222.83203	80.36888123	63222 83203	2.524278402				
68268.07813	80.37564087	68268.07813	-357.3112183				
73715.9375	80.37799072	73715.9375	2.904920816 3.165077925				
79598.54688 85950.59375	80.37770844 80.43801117	79598.54688 85950.59375	3.165077925 3.381173611				
92809.53906	80.38852692	92909 53906	3.668742418				
100215.8359	80.43935394	100215.8359	4.021641254				
108213.1641	80.33059692	108213.1941 116548.6875	4.275940418				
126173.3281	80.31874847	120173.3281	4.642297745				
136242.0938	80.45348358	136242.0938	5.439258191				
\$47154.3504	80.39654541	\$47154.3594	5.941645622				
158854.2344	80.38708496	158854,2344	6.37709713				
171530.9688	80.53754241	171533.9688 185219.3125	6.764013748				
185279.3125	80.53754425 665.9552012	185219.3125	179.905265				

Requency (Hz)	MA G	Frequency (Hz)	-	Measurement Pa Start Frequency	Body Impedance 100	
100 100	125.9262924	Frequency (Hd) 100	349.8789368	Points	100	
107.9801025	206.4634247	107.9601025	328.7500305	Amplitude		mVpp
116.597023	161.003891	116.597023	309.0910339	Enable	1	
125.9015884	90.83753204	125.9015884	305.1504822	Stop Frequency	200000	Hz
135.9488604	58.92863083	135.9486694	337.5605774	Logarithmic	1	
146.7975150	81.81140137	140.7975159	-1.337897182	Power Mode	Low Power	
158.5121002	96.53781128	158.5121002	-9.711104393	Transimpedance	16	pF
171.1615295	82.99285125	171.1015295	-15.02030704	Sample Rate	10	sps
184.8204041 199.5692596	73.68148041 84.03646851	184.8204041	-5.896260262 -1.981430531	Internal RTIA Sel Calibration Resis		0
199.5692506 215.4953867	82.84349823	199.5692596 215.4950897	-1.951420531 -6.08878994		10000 Level 1.1	0
215.4950867 232.6918182	82.84349823 77.76433563	215.4950997 232.6918182	-6.08878994 -2.769347429	Filter Level Hanning Window	Level 1.1	
251,2609643	83.27751923	252 0010102	-1.391065478	DFT Number	8192	
271 3112321	70.85466765	271 3117371	-3.025854554	PCA Cain Select		
292 9827075	80.59131744	292 9627075	1.103848281		an and	
316.3414307	81.07154083	316.3414307	-2.128114223			
341.5857849	\$1.40858459	341.5857849	-0.4355385005			
368.844696	80.25855255	368.844696	-1.121839901			
338.2788696	81.3023905	398.2788096	-0.8472059965			
430.0519507	80.43151093	430.0619507	-0.2315688282			
464.3813171 601.4394226	80.09856224	464.3813171 501.4394226	-1.019624501			
541,454834	80.77728271 80.56060791	541,454834	-0.4706708193			
584.9834521	80.76857758	584 6634521	0.2354958657			
631,3201904	80.34275055	631.3201934	-0.5011257529			
681.7001953	80.56140137		-0.1578434706			
736.1005859	80.47911072	736.1005859	-0.1567312032			
794.8421631	80.80682373	794.0421031	-0.2893503098			
858.2714233	80.69109344	858.2714233	-0.2109495252			
926.7623291 1000.718933	80.64801025 80.5749588	926 7623291 1000 718933	-0.2351000203			
1000.718933	80.5749588 80.49906921	1000.718933 1080.577393	-0.1703451872			
1080.577303	80.58679962	1109.808472	-0.1178048104			
1250.921021	80.40048218	1259 521021	-0.1351870894			
1360.463989	80.76290131	1360.463989	-0.1275280416			
1469.030518	80.64070892	1469.030518	-0.1301161796			
1586.29062	80.65958405		0.07936900109			
1712.845825	80.81205292		-0.1087189466			
1849.532715	80.6184082	1849.532715	-0.0483985804			
1997.127319	80.71374512		-0.07676424831			
2156.500244	80.52347565	2156.500244	-0.07853772491			
2514.415039	80.52347565	2528.501064	-0.04205143844			
2715.062871	80.53370667		0.02664818801			
2931,733154	80.52755737	2931,733154	-0.01962189935			
3165.688477	80.49724701		0.03795522451			
3418.313721	80.45927429		0.01968304254			
3991.099633	80.40066528		0.04626559839			
3985.6521 4303.711426	80.50621796		0.04969163612			
4303.711429 4647.151855	80.42411804 80.4222641	4303.711426 4647.151855	0.09030042452 0.1022550985			
4647.161866	80.4222641		0.00166759253			
5418.440918	80.47207842	5418.440918	0.1119753346			
5850,837891	80.50330363	5850 837891	0.1659788042			
6317.741211	80.45308685	6317.741211	0.1634949893			
6821.90332	80.53063202	6821.90332	0.2005651742			
7366.29834	80.50853729	7366.29834	0.2623439133			
7954 13623	80.55796814	7954.13623 8588.884766	0.236490041			
0274 288133	80.55185883	0274 286133	0.3140950799			
10014.38379	80.431/550/	10014 38379	0.3217393458			
10813.54199	80.47758484	10813.54199	0.3608750701			
11676.47363	80.40865326	11070.47303	0.3957341909			
12608.26855	80.45381927	12608.26855	0.4546396136			
13014.42188	80.49932098	12014.42188	0.4928641915			
14700.86621	80.55852509	14700.86621	0.5169219971			
15874.01074	80.53916168	15874 01074	0.5769128203			
17140.77344	80.44767761 80.45141602	17140 77344	0.6338024735			
18508.625	80.45141602	18538.625	0.7605718565			
21580.50586	80.51397705	21580.50586	0.7503323555			
23302.05234	80.55068207	23302 65234	0.8314989209			
25162.22862	80.49880219	25162.22852	0.889388442			
27170.19922	80.47968292	27170 19922	1.00238547			
29338.41016	80.53881836	29338.41016	1.115769029			
31679.64453 34207.71094	80.42970276 80.44425201	31679.64453 34207.71094	1.178091526			
34207.71094 38937.52344	80.44425201 80.2995285	34207.71094 36937.52344	1.260675073			
39885 17578	80.3995285	36937.52344 39885.17578	1.513694644			
43068.05469	80.42347931	43058.05459	1.661192536			
46504.92969	80.39963696	46604 92969	1.79392457			
50216.07031	80.45964813	50216.07031	1.944996506			
54223.36228	80.53054047	54223 36328	2.146861215			
58550.44531	80.4888916	58550.44531	2.319360495			
63222.83203	80.356688123	63222 83203	2.524278402			
68268.07813	80.37564087	68268.07813 73715.9375	-357.5112183			
73715.9375 79598.54688	80.37799072	73715.9375 79598.54888	3.165077925			
05950.59375	80.37770844 80.43801117	85950 59375	3.165077925			
92806 53906	80.38852692	92909 53906	3.658742418			
100215-8350	80.42935394	100215.8359	4.021641254			
108213.1641	80.33059692	108213.1841	4.275943418			
116848.6875	80.31874847	116548.6875	4.642297745			
126173.3281	80.30163574	120173.3281	5.00910759			
136242.0938	80.45348358	156242.0938	5.439258191			
158854 2344	80.39654541	158854 2344	6.941645622 6.37709713			
158854.2344	80.38708496 80.39784241	158854.2344 171530.9688	6.37709713 6.784013748			
185219.3125	80.53754425	185219.3125	7.558913708			
200000	665,9552012	200000	179.905365			


Bioimpedance Predictive Models for Sensory Scores on Previously Frozen Finfish

Sensory score

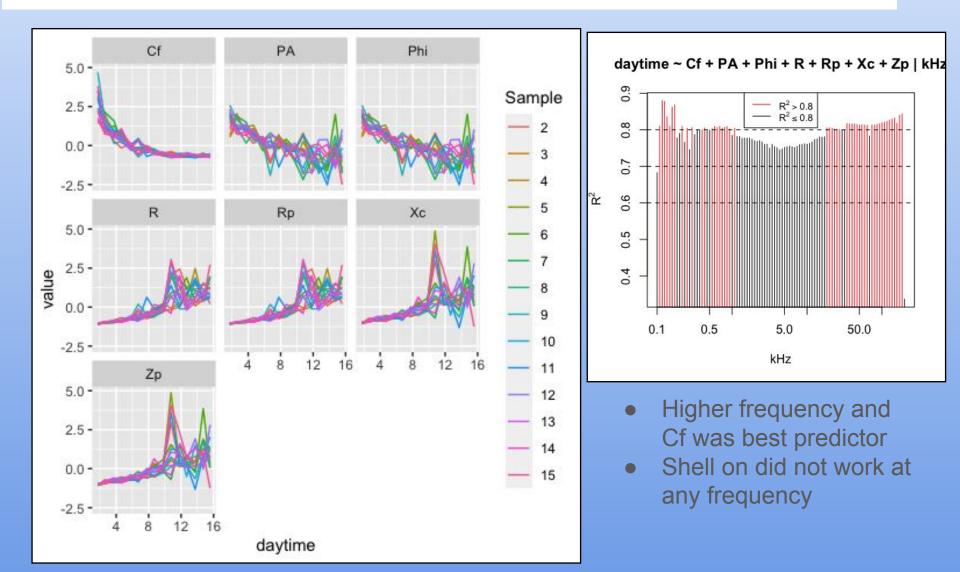
Table 4. Total frequencies that were scanned. Greer from Wilcoxen comparisons (p=0.1).


н				
	0.1	0.15	0.14	0.13
2	0.2	0.25	0.23	0.22
4	0.4	0.43	0.40	0.37
7	0.7	0.74	0.68	0.63
	1.3	1.26	1.17	1.08
	2.3	2.16	2.00	1.85
g	3.9	3.69	3.42	3.17
8	6.8	6.32	5.85	5.42
e	11.6	10.81	10.01	9.27
g	19.9	18.51	17.14	15.87
2	34.2	31.68	29.34	27.17
E	58.5	54.22	50.22	46.50
2	100.2	92.81	85.95	79.60
5	171.5	158.85	147.11	136.24

Application of Bioelectrical Impedance Analysis to Detect Broiler Breast Filets Affected With Woody Breast Myopathy

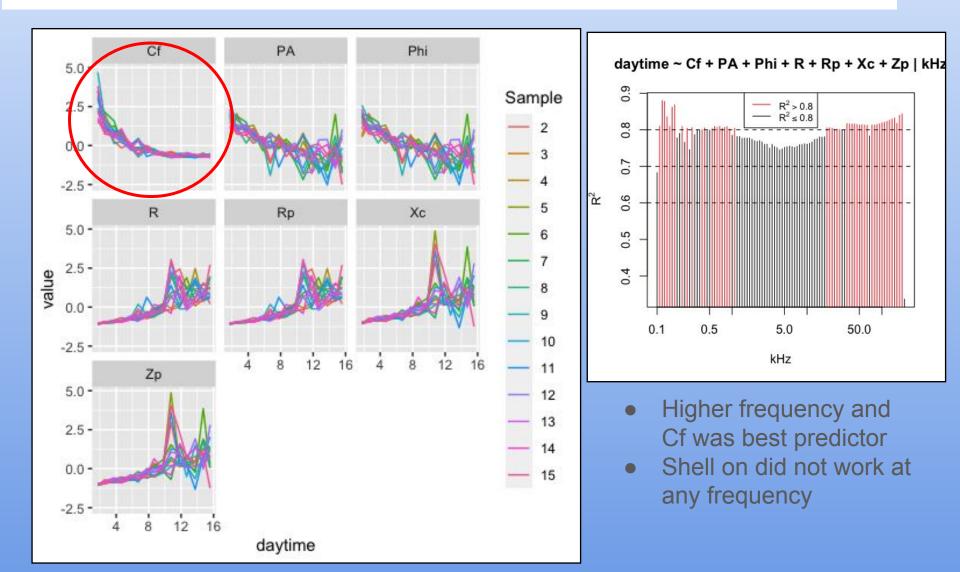
Amit Morey^{1*}, Avery E. Smith¹, Laura Jewell Garner¹ and Marlin K. Cox²

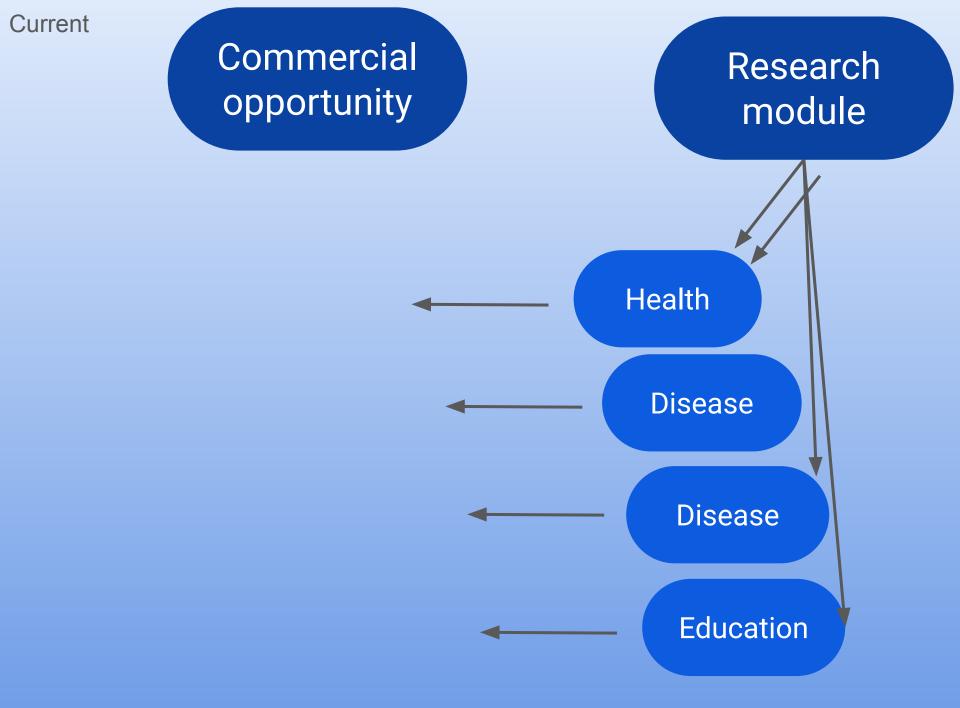
Measuring Shrimp

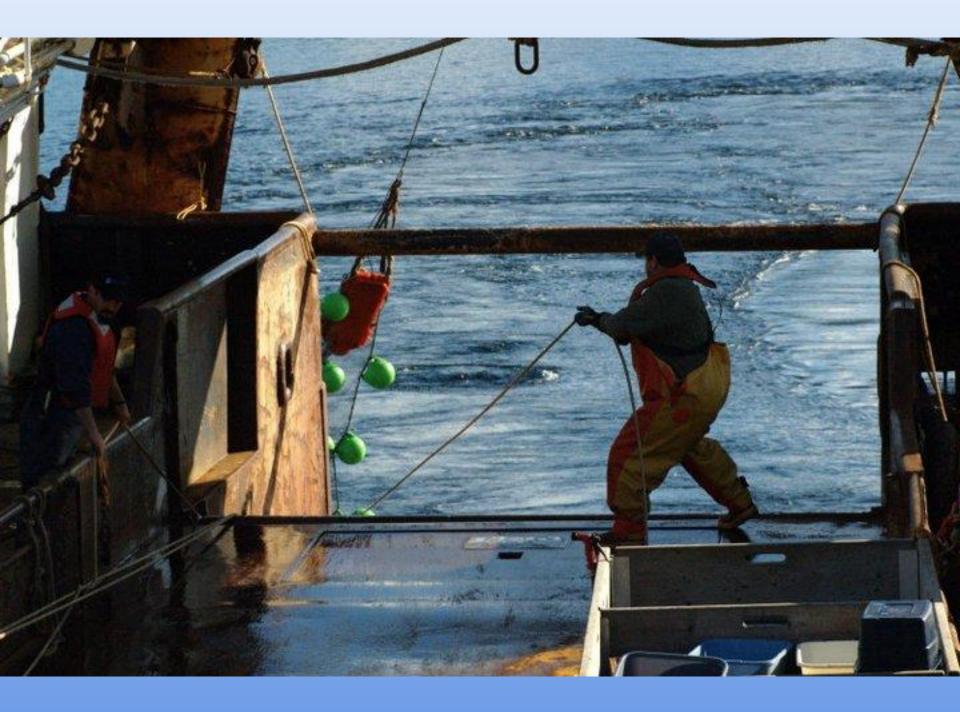


Quality and Previously Frozen

Measuring Degradation of Previously Frozen Shrimp.


Darryl Holiday, Holy Cross University Keith Cox , CQ Foods





Measuring Degradation of Previously Frozen Shrimp.

Darryl Holiday, Holy Cross University Keith Cox , CQ Foods

