



#### **Remotion of the Hook** effect from bioimpedance readings using the 3-point method and iteration

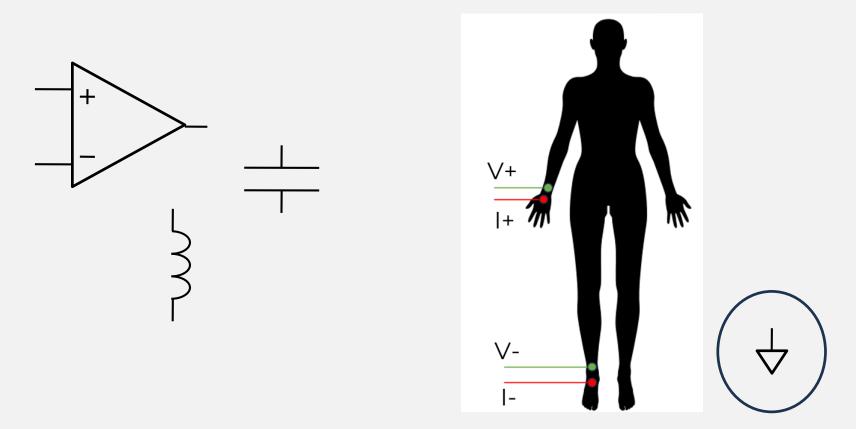
Samuel Alberto Jaimes Morales Carlos Augusto González-Correa Universidad de Caldas Colombia



ific instrument



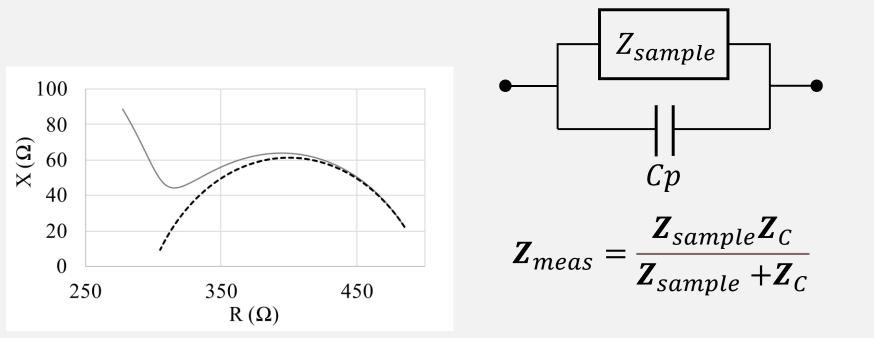












#### Introduction



Impedance measurements may exhibit deviations due to parasitic effects



#### Introduction



$$\boldsymbol{Z}_{sample} = R_{\infty} + \frac{R_0 - R_{\infty}}{1 + (j2\pi \boldsymbol{f}\tau)^{\alpha}}$$

# Hook effect: Deviations caused by parasitic capacitances.

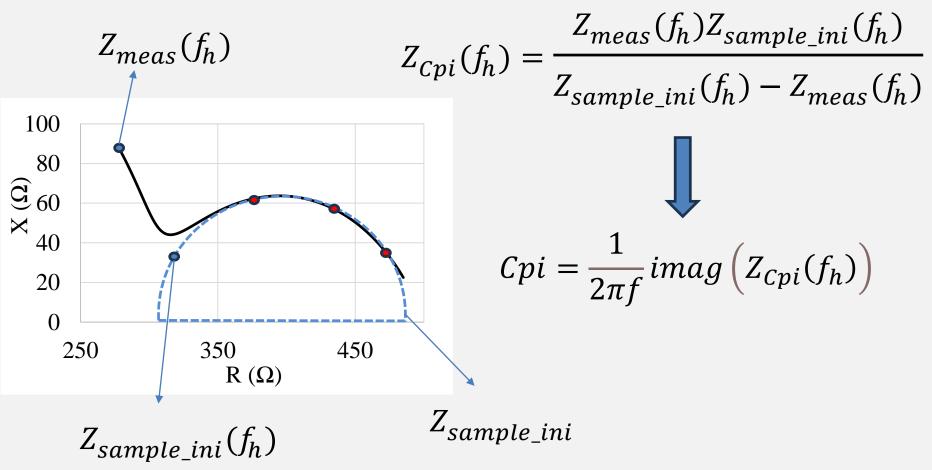
ABEE-SC





#### Introduction

# Methods for hook effect correction


 $Z = Z_m e^{i\omega TD}$  Tdelay Scharfetter H et al 1997

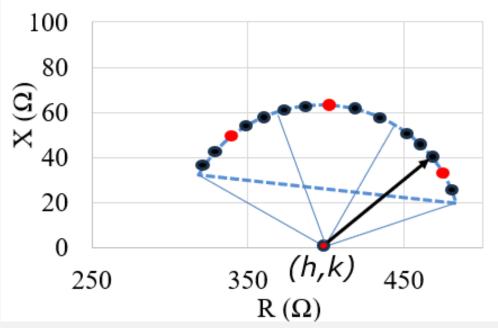
 $\mathbf{Z} = \mathbf{Z}_{m} e^{-Log[1 - \mathbf{Z}_{m} * jwCp]}$  Tdelay(w) Buendia R et al 2010

Other methods based on nonlinear square fitting



## **Proposed method**




Estimation of the initial capacitance value

ABEE-SC

CREA-SC



#### **Proposed method**



 $\boldsymbol{Z}_{sample} = \frac{\boldsymbol{Z}_{meas} \boldsymbol{Z}_{C}}{\boldsymbol{Z}_{C} - \boldsymbol{Z}_{meas}}$ 

swept from Cpi/5 to 5Cpi in 250 steps

For each Cp,  $Z_{sample}$  is calculated.

Then the 3P method is applied to  $Z_{sample}$ 

Select the combination with the least SD of the radii calculated from each point to the centre (h, k)











UNIVERSITY OF OSLO



#### Errors for simulated models

| Parameters errors (%) and values of the n | nodels. |
|-------------------------------------------|---------|
|-------------------------------------------|---------|

| % error vs. Theoretical values |         |              |         | Parameter values |         |                             |                      |     |         |                         |
|--------------------------------|---------|--------------|---------|------------------|---------|-----------------------------|----------------------|-----|---------|-------------------------|
| Parameter                      | $R_0$   | $R_{\infty}$ | α       | τ                | Ср      | $R_0 \left[ \Omega \right]$ | $R_{\infty}[\Omega]$ | α   | τ [s]   | <i>Cp</i> [ <i>pF</i> ] |
| Model 1                        | 0.00341 | -0.00077     | 0.00604 | 0.00911          | 0.27254 | 500                         | 300                  | 0.7 | 1.0E-05 | 15                      |
| Model 2                        | 0.01621 | -0.00366     | 0.02873 | 0.04337          | 0.12977 | 500                         | 300                  | 0.7 | 1.0E-05 | 150                     |
| Model 3                        | 0.03682 | -0.00020     | 0.00664 | 0.09125          | 0.08472 | 500                         | 300                  | 0.7 | 5.0E-07 | 100                     |
| Model 4                        | 0.00000 | 0.00000      | 0.00000 | 0.00000          | -       | 200                         | 100                  | 0.7 | 5.0E-06 | 0                       |

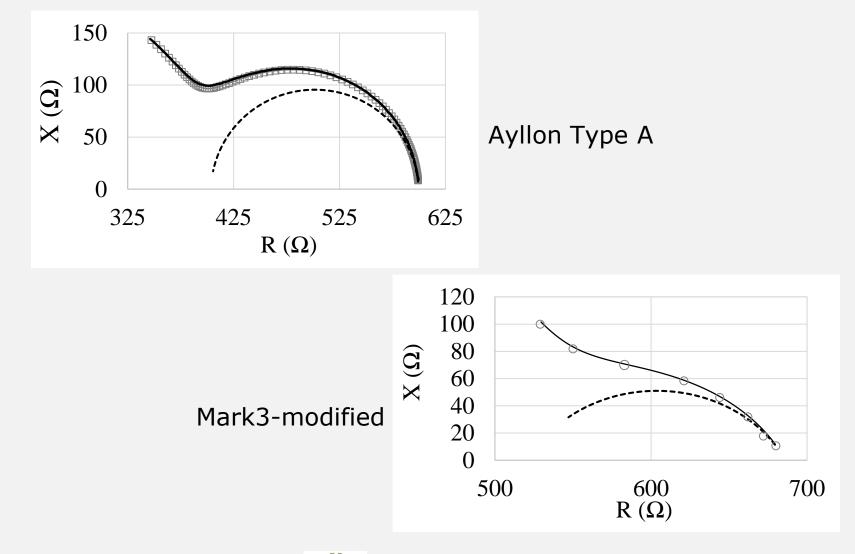











#### Results

Errors vs. Tdelay(w), applied to data obtained from Ayllon *et al* 2016 and a measurement taken with Mark3-modified device

| % error vs. $Tdelay(\omega)$ |          |              |          |          |  |  |  |  |  |
|------------------------------|----------|--------------|----------|----------|--|--|--|--|--|
| Parameter                    | $R_0$    | $R_{\infty}$ | α        | τ        |  |  |  |  |  |
| Ayllon et al 2016 type A     | -0.00121 | 0.00002      | -0.00016 | 0.03830  |  |  |  |  |  |
| Ayllon et al 2016 type B     | -0.00010 | 0.00009      | -0.00052 | 0.00129  |  |  |  |  |  |
| Ayllon et al 2016 type C     | -0.00045 | 0.00037      | -0.00242 | -0.01122 |  |  |  |  |  |
| Mark3-modified               | 0.00189  | 0.00350      | -0.02032 | 0.04706  |  |  |  |  |  |



#### Results



CREA-SC

ABEE-SC



scio

scientific instruments

nutua 👓

## Discusion

- The method presented here shows a very good agreement when compared to the theoretical values, showing errors below 0.03% (Table 1)
- When Cp is absent, the exact values were found
- in comparison to the  $Tdelay(\omega)$ , it shows very low errors
- iterative search for Cp needs neither values of admittance at very high frequencies, nor the fitting of conductance, unlike other methods



## Conclusion

- The proposed method that allows the remotion of the hook effect by iteratively searching the capacitance Cp and using 3P method is presented.
- Due to the very good agreement with the  $Tdelay(\omega)$  method, it seems to be a good alternative to extract the Cole model parameters in spectra affected by parasitic capacitance effects.
- it could be easily implemented in low-cost processors.







#### Remotion of the Hook effect from bioimpedance readings using the 3-point method and iteration





scientific instruments







